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P E N E T R A T I O N  O F  A N  E L A S T I C  C I R C U L A R  C Y L I N D R I C A L  S H E L L  I N T O  

A N  I N C O M P R E S S I B L E  L I Q U I D  

M. F.  I o n i n a  UDC 532.58 

The plane unsteady problem of impact of a thin elastic cylindrical shell on the surface of an 
ideal incompressible liquid is considered. The initial stage of interaction between the body and 
the liquid when the stresses in the shell attain peak values is studied. The problem is treated 
in a linearized formulation and is solved numerically by the normal modes method within the 
framework of the Wagner approach. The numerical results agree with experimental data for 
various types of circular cylindrical shells made from mild steel. 

T h e  plane unsteady problem of an impact by an elastic circular cylindrical shell on the surface of an 
ideal incompressible liquid is considered. At the initial moment (t -- 0), the liquid occupies the half-plane 
y < 0 and rests, and the shell touches the liquid at the point x -- 0, y = 0 and has the velocity V directed 
vertically downward. The initial position of the free boundary of the liquid coincides with the horizontal line 
y = 0; the  pressure on the free surface is assumed to be constant and equal to zero. For t > 0, the shell 
strikes the  liquid. The shell model that  takes into account the circumferential bending and normal stresses 
is used. T h e  shell thickness h is assumed to be much smaller than its radius R. It is required to determine 
the stresses in the shell during its immersion in the liquid. 

In this  paper, we use the method of [1], which was developed for analysis of a wave impact on the 
center of  a plate. However, the geometry of the problem is more complicated; therefore, it is necessary to 
use the cylindrical  coordinates to describe the dynamics of a shell and the Cartesian coordinates to describe 
a liquid flow. Moreover, in contrast to the problem of a plate impact,  where the duration of the impact 
stage can be estimated from geometrical considerations, in the case of a shell impact the impact stage is not 
distinct. I t  is assumed that  the duration of the impact stage, in which the hydrodynamic loads are very high 
and the bending stresses reach their maximum value, is connected with the frequencies of free oscillations of 
the shell. 

I n t r o d u c t i o n .  We consider a thin circular cylindrical shell. Its strain state is plane if the deflection 
of the shell and the stresses in it do not  vary along the generatrix of the shell. In deriving the equations 
of equi l ibr ium of a plane circular cylindrical shell, the inertia in the circumferential and radial directions is 
taken into account (r and t~ are the cylindrical coordinates). The  dynamic equations for a circular shell are 
written in the  form [2] 

1 0 M  ON 02v 1 02M 02w 
R 08 O0 p o h R - ~  =0,  -~ 00------ ~ + N + p o h R ~ - p o R = O .  

Here w is the  normal displacement of the shell, which is positive if directed toward the center, v is the 
tangential displacement, which is positive in the O-direction, P0 is the density of the shell material, P0 is the 
external pressure acting on the shell, M is the specific circumferential bending moment, and N is the specific 
circumferential  normal force. 
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The specific forces in the shell cross sections are expressed in terms of the curvature change m and the 
circumferential strain E of the middle surface: 

E h  ~ E h  
M =  12(1 _ v2) ~e, N = - I _ - - - - - ~ .  (1) 

Here 

~ =  --fi~ -~  + 0o2]' 
1 Ov 

E is Young's modulus, and ~ is Poisson's ratio of the shell material. 
I t  should be noted tha t  since the thickness of the shell is small, even insignificant bending moments 

cause high stresses; therefore, it is important to determine the forces in the shell upon bending to design a 
reliable structure. 

The strain at an arbi t rary point located at the distance z from the middle line of a plane shell is 
expressed in terms of the curvature change ~e and the strain r of the middle surface by the formula [2] 
~" = r + zse ( - h / 2  <~ z <~ h/2),  where the z axis is directed toward the center of curvature of the shell. 

In a dynamic analysis of shells, the hypothesis on the inextensibility of the middle line is widely used; 
this hypothesis implies tha t  the circumferential strain of the middle line of a cylindrical shell E is equal to zero 
and, hence, the equality w = Ov/O0 holds. This assumption substantially simplifies the dynamic equations 
of a shell, but leads to certain inaccuracies in the solution of the problem, which will be considered below. 

Under the condition tha t  the shell's middle line is inextensible, the frequencies of its free oscillations 
are calculated from the formula [3] 

1 ~/ E h 2 i2(i2 _ 1)2 
f ~ = ~ , p 0 ( 1 - v  2) 12R 4 i 2 + 1  (3) 

If i = 0 (radial oscillations), we obtain f0 = 0; if i = 1, f l  = 0 and the shell behaves like a rigid nondeformable 
body; if i = 2, the shell executes flexural oscillations corresponding to the main (lowest) normal mode with 
the period of oscillations T2 = 1 / f2 .  

The hydrodynamic loads on impact of the shell on the liquid surface increase rapidly and then decay. 
Est imat ing the duration of the impact stage, we note that  it can be determined as a stage of penetration of 
a body in a liquid when the dimension of the wetted part of the shell S( t )  is much larger than the depth of 
its immersion H(t) ,  i.e., the ratio ~ = H ( t ) / S ( t )  is small. It is noteworthy tha t  this ratio depends on the 
solution of the problem and its smallness should be verified a posteriori. For a constant  velocity of the body, 
we have H ( t )  = Vt .  Neglecting the deformations of the liquid boundary and elastic shell during impact, 
we find tha t  at the time t l ,  the width of the contact region between the liquid and the body S( t l )  is equal 
to 2~/R 2 - (R  - Y t l )  2 and is of the order O(Rv/-R--~) for small tl.  The quant i ty  L = Rv/-R-VT is assumed 
to be the scale of length, where T is the scale of time, which is determined by the duration of the impact 
stage. If  the quantity R / V  is chosen as the scale of time, we obtain a crude estimate of the duration of 
the initial stage of penetration. It follows from (1) and (2) that  within the framework of the hypotheses on 
the inextensibility of the middle line of a shell, the second mode of oscillations of the shell gives the main 
contribution to bending stresses. Therefore, the period of the lowest mode of flexural oscillations of the shell 
T2 is taken to be the scale of t ime T -=- T2. 

The distinguishing feature of the problem is that the elastic shell is bent  by the hydrodynamic loads 
the region of application of which - c ( t )  < x < c(t) extends with time and whose amplitude depends on elastic 
strains. The problem is coupled: the liquid flow and the deformations of the body should be determined 
simultaneously. At the same time, it is necessary to determine the dimension of the wetted part of the body, 
which is an important characteristic of the process. The calculation of the function c(t) involves significant 
difficulties and is usually carried out using approximations [4]. 

I t  is required to determine the strains of the shell, its deflections, and the position of the points of 
contact under the following assumptions: 
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1) The liquid is ideal and incompressible; 
2) The external mass forces and the forces of surface tensioh are absent; 
3) The liquid flow is planar, potential, and symmetric about the y axis; 
4) The shell is elastic, thin-walled, and the deformations during the impact are small compared to the 

radius of the shell R; 
5) The period of the lowest mode of free flexural oscillations of the shell T2 is much smaller than the 

ratio R/V; 
6) The dimension of the contact region between the shell and the liquid increases monotonically. 
Below, we use the dimensionless variables that are determined using the following scales: L is the scale 

of length, T is the scale of time, V is the scale of velocity, VL is the scale of velocity potential, VT is the scale 
of displacements, and pVL/T  is the scale of pressure, where p is the density of the liquid. The dimensionless 
variables are denoted by the same symbols as the corresponding dimensional quantities. 

Fo rmula t ion  of  t h e  Problem. In considering the initial stage of immersion, we assume that the 
vertical velocity of liquid particles is of the order of the velocity of the shell V. Then, the rise of the free 
boundary is of the order of the immersion depth of the shell O(H). In this case, the linearization parameter 
a (the ratio of the characteristic depth of immersion VT to the characteristic dimension of the contact region 
L in the impact stage) is equal to Vx//-V-T-/R. In the initial stage, when the depth of immersion is still small, 
the equation of motion and the boundary conditions can be linearized with accuracy O(a) and shifted to 
the initial level of the undisturbed liquid y -- 0. The error of the approximate solution of this problem 
relative to the exact solution can be estimated as O(a). In the first approximation, the motion of the liquid 
is described by the Laplace equation for the velocity potential ~(x, y, t) in the lower half-plane y < 0 with 
the corresponding boundary conditions. 

In the symmetric case, the position of the points of contact is specified by one function c(t). Although 
the equations of motion and the boundary conditions are linearized, the problem remains nonlinear, since the 
quantity c(t) is not known beforehand. Precisely the last circumstance determines the difficulties that arise 
in a study of the impact of elastic bodies on the liquid. 

In dimensionless variables, the formulation of the problem has the form 

02w A(w Ov -103v 04w'~ = Gpo(O,t) (-Tr < ~ < 7r); (4) 

o2v ow _1o% 
(5) 

v ( o , 0 )  = v , ( e , 0 )  = w ( e , 0 )  = w , ( o , 0 )  = 0 < e < (6) 

P---- --~t (y ~< 0); (7) 

+ = 0 (y < 0); (8) 

7~--o ( y=O,  I x t>c ( t ) ) ;  (9) 

~y = - 1  + wt (y = O, lxt < c(t)); (lO) 

Here p(x, y, t) is the pressure in the liquid and p0(O, t) is the hydrodynamic load (pressure) acting on the 
shell. In the contact region, for Ixl < c(t) we have po(O, t) = p(x((~, t), y(~, t), t), where x(~, t) and y(O, t) are 
the horizontal and vertical components of the moving deformable shell in the Cartesian coordinate system, 
respectively. Formula (7) for the pressure follows from the linearized Cauchy-Lagrange integral. 

The dimensionless parameters A, B, and G in Eqs. (4) and (5) have the form 
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E T  2 ET2 h 2 p L 
A = p0R2(1 _ u2 ) , B = 12p0R4(1 _ v2 ) , G -  poh" (12) 

In the initial stage, we have y(0, t) = O(c~) in the contact region and, hence, 

po(O, t) ~ p(x(O), 0, t) [101 < 0c(t)]. (13) 

Moreover, in this region, the following approximation in the principal order 

0 ~ 7x,  0c(t) ~ ~/c(t), ~/= L / R  [t > 0, Ix[ < c(t)], (14) 

is valid as a -~ 0, which will be used below in the replacement of 0 by x in the equations. 
The formulation of problem (4)-(11) is not complete. Therefore, a condition that  serves to determine 

the function c(t) and calls for the nonpenetration of the liquid particles at the free surface into the moving 
elastic surface should be added. In the symmetric case, this condition leads to the transcendental equation 

[51 
~/2 

f yb(c(t) t) = o, (15) sin0, dO 

0 

which was derived using the Wagner condition [6]. Here the function yb(x, t) describes the shape of a moving 
deformable elastic shell. In dimensionless variables and in the principal order as a ~ 0, this function has the 
form yb(x, t) = x2/2 -- t + w(x ,  t). In this case, Eq. (15) yields 

7r/2 
lc2  2 / t = ~ + 7r- w(c(t)sinO, t)dO. (16) 

0 

The initial boundary-va!ue problem (4)-(16) is solved by the normal modes method. 
M e t h o d  of  So lv ing  t h e  P r o b l e m .  In the section of the liquid boundary - ~  < x < ~-, y = 0, which 

contains the spot of contact, the velocity potential and the pressure distribution can be represented in the 
form 

c~ oQ 

= y-:.  n(t) cos (nO), =  pn(t) cos (no). (i7) 
n = 0  n = 0  

With allowance for (7), it follows that  pn(t) = - ~ n ( t )  (n = 1 ,2 , . . . ) .  The dot denotes the derivative with 
respect to time. 

The shell displacements are determined in the form 
o~ oo 

w(O, t) = E an(t) cos (nO), v(O, t) = ~ bn(t) sin (nO). (18) 
n = O  n = l  

Substituting expressions (17) and (18) into the equations of shell deformations (4) and (5), we obtain the 
following system of second-order ordinary differential equations: 

for n > 0 and 

an + an(A + B n  4) - b,~(An + B n  3) - Gpn = O, 

"bn - an(An + B n  3) + b,~(An 2 + B n  2) = 0 

(19) 

50 + Aao - Gpo = 0 (20) 

for n = 0. 
It is convenient to use the generalized coordinates an(t) (n -- 0, 1, 2 , . . .  and bn(t) (n -- l, 2 , . . . )  as the 

new desired functions and express the other quantities in terms of these functions. 
We write system (19), (20) in the form 
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d 
d-t (a~ + G~n) + an(A + B n  4) - bn(An + B n  3) = O, 

(21) 
d .  
-~ bn - an(An + B n  3) + b,~(An 2 + Bn 2) = O. 

Now we can introduce new auxiliary functions g~ = a~ + G ~  (n = 0, 1, 2 . . . .  ) and rn = b,~ (n = 1, 2 , . . . )  and 
rewrite (21) in the form of a system of first-order ordinary differential equations 

an = gn - G~n, l)n = - a n ( A  + Bn  4) + bn(An + Bn3), 
(22) 

D,~ = rn, § = an(An + B n  3) - b~(An 2 + Bn2). 

The eigenfunctions ~bn(O) = cos (nO) satisfy the orthogonality condition 
7r 

1 
/ r162 dO = 5rim, 

T :  J 
- -  "ff 

where 6nm = 0 for n # m, 5nn = 1 for n > O, and 5oo = 2. With allowance for (9), (14), and (17), from this 
condition follow the equalities 

~(t) 

~n(t) = 2 / 
7"1" J 

-c(t) 

c(t) 

~(x ,O, t ) r  (n r 0), ~o(t) = ~ ~(x ,O, t )dx .  

-c(t) 

To determine the dependences of ~am(t) (m = 0, 1 ,2 , . . . )  on the generalized coordinates an(t) (n = 
0, 1, 2 , . . . )  and bn(t) (n = 1, 2 . . . .  ), we consider the hydrodynamic part of the problem (4)-(11) separately. 

We find new, harmonic in the lower half-plane y ~ 0, functions Cn(X, y, c) as the solutions of the 
boundary-vMue problem 

Oq2r Oq2r 
o~--r + ~ = 0 (y < 0); (23) 

r = 0 [y = o, I~1 > c(t)]; (24) 

Or 
= r  [y = 0, I~1 < c(t)]; (25) 

oy 

Cn --* 0 (x 2 + y2 __, oo) (26) 

with integrable singularities of the first-order derivatives in the neighborhood of the points of change of the 
form of the boundary condition (x = +c). Here n = 0, 1,2, etc., and ~b0(3'x) - 1. One can note that given 
the function c(t), problem (8)-(11) is linear. Comparing the boundary conditions (10) and (25), we obtain 

oo  

~(~, 0, t) = - r  0, c) + ~ an(t)r 0, c); (27) 
r e = 0  

~o,n(t) = - fro(c)  + ~ an(t)Snm(c). (28) 
n - ~ 0  

Here 
c 

 icl =  /oolx, o,c  mi xldx 
--C 

(m ~ 0); (29) 

c 

f0(c) = ~ Co(x, 0, c) dx; (30) 
--C 
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c 

F c  

(m-Co, ~ #  o); (31) 

c 

s .0(0  = ~ r dx; 
- - C  

(32) 

r 

Sore(c) = ~ Co(x, 0, C)r dx.  (33) 
- - C  

The matr ix  S with the elements S,~m(c) (n  = 0, 1, 2 . . . .  and m = 0, 1, 2 , . . . )  is symmetric, which follows 
from (25), (31)-(33), and the Green's second integral theorem, and depends only on the dimension of the 
spot of contact c. It is known that  r 0, c) = ~ - x 2 for Ixl < c; whence f ,~(c) = c J1 ( m T c ) / m  for m # 0 
and fo(c)  = c2"y/4, where Jl is a first-order Bessel function. The elements Snm of the matrix S can also be 
written in terms of the Bessel functions: 

c 
Shin(c) = n2 _ m2 [nJ,(nc"/)Jo(rnc"/) - mJo(ncT)J t (mc" / )]  ( n , m  > O, n # m),  

c c2qr 
sn0(c) = ~J l (nc -y)  (~ > 0), sn~ = T [J~ + J~(~c~)] ('~ > 0), So0 = ~2  

4 ' 
which significantly simplifies their calculation. Substituting (28) into system (22), we obtain the following 
infinite system of ordinary differential equations relative to the generalized coordinates: 

da 
d-'-[ = ( I  + G S ) - Z ( g  + G f ) ;  (34) 

@ 
d--t = - D 1  a + D2b; (35) 

db 
d-t = r;  (36) 

dr 
d'-'t = D 2 a  - D3b. (37) 

Here a = (ao, a l ,  a2 , . . . ) t ;  b = (bl, b2,.. .)t,  9 = (go, gl, g2 . . . .  ) t  r = (rl, r2 , . . . ) t ,  f = (fo(c), f l  (c), f 2 ( c ) , . . . ) t ,  
I is a unit matrix,  Dr,  D2 and Da are diagonal matrices, D1 = diag{A + Bn4}, D2 = diag{An + Bn3} ,  and 

diag{An 2 + B n 2 } ,  and the superscript t denotes transpose of a matrix. D3 
The right sides in system (34)-(37) depend on a,  b g, r ,  and c and do not depend on t; therefore, it 

is convenient to choose the quantity c as a new independent variable. The differential equation for t = t(c) 
follows from condit ion (19) if one differentiates it with respect to c: 

dt 
d"c = Q(c,  a, a). (38) 

Here Q(c, a, &) = (c + (4/Tr)(a, re(c)))/(2 - (4/Tr)(a, r(c))) .  Here (-, .) is the scalar product of the vectors, 
~r/2 

r (c)  = (Fo(c), Fl(c),  F2(c) , . . . ) ,  re(c)  = (F0c(C), Fie(c), F2c(C),...), Fn(c) = / Cn(csin 0) dO, and F,~c(c) = 

o 
7r/2 

/ r  sin O dO which, after calculations, be expressed in terms of zeroth- and first-order Bessel c a n  

0 
functions: 
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7r 
r (c) = 30( cv), 

7r 
r n c ( c )  = - 

Multiplying each equation of system (34)-(37) by dt/dc and making allowance for (38), we obtain 

da 
d-T = F(c ,  9)Q(c, a,  F(c ,  g)), 

db 
m dc rQ(c,  a, F(c ,  g)), 

--~ = ( - D i n  + D2b)Q(c, a, F(c, g)), 
dc 

dr 
d-'c = (D2a - D3b)Q(c, a, F(c, g)). 

(39) 

Here F(c ,  g)  = (I + GS) -1 (g + Gf (c ) ) .  System (39) is solved numerically for the zero initial conditions 

a = 0, b = 0, g = 0, r -- 0, t = 0 (c = 0). (40) 

T h e  choice of c as a new independent variable seems to be natural, since this corresponds to the 
s t ruc ture  of system (39). The  introduction of new desired functions an(t) and r~(t) instead of the derivatives 
/L~(t) and  bn(t) solves the problem of the beginning of numerical calculation: the right sides in system (38), 
(39) vanish for c = 0. If the problem is solved in the initial variables, difficulties with the beginning of 
calculation arise, which can be overcome only by an artificial method. The reason is that,  for short times, we 
have c(t)  = O(v~), w ( x , t )  = 0(t3/2), wt = O(v~), and wtt = 0 ( t - I / 2 ) ,  i.e., in the beginning of the impact, 
tile spot  of contact extends with a very large velocity, and the accelerations of the elements of the elastic 
surface are unbounded. At the same time, the desired quantities, which are regarded as functions of c, i.e., 
t = O(c2), w = O(c3), and wt = O(c), increase smoothly at the initial stage. In solving the Cauchy problem 
(39), (40), the derivatives &n(t) are determined by formula (34), and the derivatives b,, by formula (36). 

In the Cauchy problem (39), (40), a finite number of normal modes N is retained and it is assumed that  
an ~ O, bn =- 0, gn =- O, and rn = 0 for n />  N + 1. The problem is solved by the fourth-order Runge-Kut ta  
method  with a constant step relative to the variable c. The choice of the step was considercd in detail in [1]. 
Calculations were performed for various values of N to investigate the convergence with increasing N. It is 
sufficient to take N = 15 in the calculations, since the values of the desired quantities vary insignificantly as 
the number  of the retained modes is increased. 

D e s c r i p t i o n  o f  t h e  E x p e r i m e n t .  Shibue et al. [7] carried out experiments on a thin-walled cylinder 
to reveal the specific features of the deformation of a cylinder at water impact. Faltinsen et al. [7] proposed 
a numerical  method of determining the deformations of a cylinder with the use of the available experimental 
data. T h e  pressure measured in the experiments is divided into two parts, each of which is used to @stimate 
the max imum values of the strains. The  pressure in the shell increases rapidly on water impact and then 
decreases abruptly during its further immersion. This part of the pressure with a pronounced peak is called 
an impac t  pressure. The profile of the impact pressure is approximated by a triangular pulse, the base and 
height of  the triangle corresponding to the duration and amplitude of the impact pressure, respectively. After 
the impac t  pressure is decreased, the hydrodynamic loads acting on the body are relatively small, but act for 
a long t ime. The experiments of [7] show that  the strains tha t  were obtained numerically only with allowance 
for the impact  pressure are significantly smaller than the measured values. Consequently, the peakless part  
of the pressure should also be taken into account in calculations. 

T h e  purpose of our experiment is to investigate the evolution of the hydrodynamic pressure on an 
elastic cylinder and its stresses in the two-dimensional case. 

A cylinder of length 600 mm and diameter 312 mm was dropped on the water surface from heights of 
0.5, 1.0, and 1.5 m. To provide a two-dimensional flow during immersion of the body in water, two vertical 
plates were installed on either side of the cylinder. To preserve the horizontal position of the cylinder during 
its fall, the  cylinder was suspended from a rigid beam sliding along two vertical guides. The  cylinder was 
lifted to  the required height by means an electromagnet, then the magnet was switched off, and the cylinder 
fell down to the water. At the moment when the cylinder touched the water, it was detached from the beam 
and moved  without the beam. To prevent the leakage of water into the cylinder, a rubber film was pulled on 
the ends of the cylinder. 
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The experiment was carried out on cylindrical shells of thicknesses 5.1 and 1.0 mm; we call them thick 
and thin cylinders, respectively. The cylinders were made of mild steel of different standards; the mass of the 
thick cylinder (JIS STRG370 standard) was 23.8 kg and the mass of the  thin cylinder (JIS SPCC standard) 
was 5.0 kg. 

Strain gauges of the  semiconductor type and diaphragm pressure gauges were attached to the inner 
surfaces of the cylinders; the thin cylinder was equipped only with a strain gauge. The signals from these 
gauges were registered by a personal computer. The threshold frequency registered by the pressure gauges 
was 100 kHz and that  registered by the strain gauges was 5 kHz. 

The main results of  the experiment are given for the top of the shell (0 = 0), i.e., for the point of initial 
contact  between the body  and the water surface; here, the maximum pressures and strains are observed. 

For the thick cylinder,  for 0 = 0 the strains and the pressure reach their  maximum values for about  

4 msec and 0.05 msec, respectively, after the impact. The  measured period of oscillations of the cylinder is 
about  8 msec, which agrees with the value 7.5 msec predicted from Eq. (3) for the period of two-dimensional 
flexural oscillations of the cylinder. For the thin cylinder, the maximum strain is observed much later, for 
about  22 msec after the impact .  

N u m e r i c a l  R e s u l t s .  In a numerical solution of the problem (39), (40), the experimental da ta  of [7] 
were used. The values of the main parameters are R = 0.156 m, hi = 5.1 mm, h2 -- 1.0 mm, ml  = 23.8 kg, 
rn 2 = 5.0 kg, E = 206 �9 109 Pa, and v = 0.33. (The subscripts 1 and 2 denote  the quantities tha t  refer to 
the thick and thin cylinders, respectively.) These values are used to calculate the other parameters of the 
problem, namely, the densities of the shell material P01 = 8067 k g /m  3 and Po2 = 8530 kg/m 3 under the 
assumption that the dis tr ibut ion of the mass over the body is uniform and the fall velocity of the shell is 
V --- 4.1 m/sec under the assumption that its center of mass falls from a height of 1 m. 

For the thick cylinder, the coefficients in the equations of the shell are A -- 6.17 �9 104, B = 5.5, and 
G -- 1.65. The scale of length is 6.8 cm, the scale of t ime is 7.2 msec, and the scale of velocity potential  
is 0.28 m2/sec, the scale of displacement is 2.9 cm, and the scale of pressure is 0.038 N / m m  2, and the 
linearization parameter  is ~r -- 0.43. 

For the thin cylinder, we find that A = 1.61 �9 106, B = 5.5, and G = 18.14. The scale of length is 
15.5 cm, the scale of t ime is 38 msec, the scale of velocity potential is 0.63 m2/sec, the scale of displacement 
is 15.4 cm, the scale of pressure is 0.016 N/mm 2, and the linearization parametei" is a -- 0.995. One should 
be critical about the numerical  results obtained for the thin cylinder, since the corresponding scales are too 
large for the description of the initial stage of penetrat ion of the elastic body  into the liquid. 

We now investigate the water impact of the thick cylinder in greater  detail. The strains at the top of 
the cylinder (0 = 0) were calculated. The calculations were performed for various numbers of the. retained 
modes N to establish the convergence of the numerical solution with increase in N. The resulting t ime 
dependence of the strain e in the thick cylinder for 8 --- 0 and V -- 4.1 m/sec  agrees qualitatively with the 
experimental  data (curve 1 in Fig. 1 refers to numerical results, and curve 2 to the experiment). The  t ime at 
which the maximum strains occur in the cylinder is the same, but their  numerical values differ considerably. 
Apparently, this is caused by the wrong choice of the velocity of the cylinder. Indeed, it follows from the 
experiments on the impact  of a horizontal plate on the wave crest [8] t ha t  after  the impact, the velocity of 

the body decreases abrup t ly  up to a certain value and remains almost constant  for a while. For example, in 
the experiment of [8], the  velocity was equal to 3.1 m/sec  before the impact  and 2.5 m/sec after the impact. 
According to [8], precisely this velocity value should be used in the calculation of the stresses in the plate 

when it interacts with a liquid. 
It is not clear from [7], the data  of which were used in our study, whether  the velocities of the cylinder 

during its fall and subsequent  penetration into the liquid were measured. In this connection, we carried out 
fur ther  investigation of our  model, namely, we calculated the maximum strain as a function of the impact 
velocity V for ~ = 0 (curve 1 in Fig. 2 refers to the quadratic approximat ion y = 14.386x 2 + 45.139x with 
the correlation coefficient 0.998, curve 2 to the approximation y = 141.58x - 121.31 with the correlation 

1170 



E 106 

400 

-400  

o ' ' 12 ' 1~o t,msec 

10 6 

800 

400 

! / / 

,,~ 2 

t" i 

2 4 5 �9 V, m/see 

Fig. 1 Fig. 2 

~. ,106 

200 

-200 

a 

0 4 8 I'2 I(5 t. msec 

Fig. 3 

c-106~ 

200 - 

0 -  

-200 - 

b 

0 4 8 12 16 t ,  mser 

E.106 

200 

-200  

"1' 1 

o 4 8 1~ 1~ t,m,eo 

106 

1500  

1000 

500 - 

O- 
('\ 

10 2'4 t,m,oc 

Fig. 4 Fig. 5 

1171 



coefficient 0.992, and the points refer to numerical calculation). In the experiment of [7], the maximum value 
of the strain was ~ = 322 �9 10 -6 for ~ --- 0; using this value, we found that V = 3.5 m/sec, which corresponds 
to the velocity of penetration of the cylinder into a liquid in our model. Further calculations for the thick 
cylinder were performed for V = 3.5m/sec. 

For V = 3.5 m/sec, the scale of length is 6.3 cm, the scale of velocity potential is 0.22 m2/sec, the scale 
of displacements is 2.5 cm, the scale of pressure is 0.03 N/mm 2, and the linearization parameter is a = 0.40. 

The results of calculations for V = 3.5 m/sec shown in Fig. 3a and 3b for 0 - 0 and 20 ~ respectively 
(curves 1), agree well with the experimental data of [7] (curves 2) for the first 7-8 8 msec after the impact. 
Thus, the estimate of the maximum strains can be considered reliable. 

Figure 4 shows results of the calculations for V = 3.5 m/sec that were obtained with the use of the 
approximate shell model (curve 1), i.e., under the assumption that the middle line of the shell is inextensible. 
The model gives a result close to the experiment (curve 2) only for the first 2.5-3 msec after the impact and 
yields incorrect values of the maximum strains. The latter is a serious drawback of the model. 

Similar calculations were performed for the thin cylinder with V = 4.1 m/sec. The numerical results 
shown in Fig. 5 (curve 1) do not quite agree with the experimental results (curve 2), but give insight into 
the variation of the initial parameters of the problem. 

Thus, the model of hydroelastic interaction between a cylindrical shell and a liquid that is used in the 
present study describes the process with sufficient accuracy and allows one to estimate the maximum strains 
of the shell. The mlmber of modes which are necessary to retain tD describe the dynamics of the shell is 
relatively small. 
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work. 
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